๐Ÿ—‘๏ธ

#1

๋‚ ์งœ
2024๋…„ 06์›” 25์ผ
์ƒ์„ฑ ์ผ์‹œ
2024๋…„ 06์›” 26์ผ
floatFirstTOC: right

๐Ÿ–ฅ๏ธย ์‹œ์ž‘ํ•˜๋ฉฐ

๐Ÿ’ก
ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹ ๊ณต๋ถ€

๐Ÿ”ย ์ •๋ฆฌ

ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹์€ ํŠน์ • ์ž‘์—…์— ๋งž๊ฒŒ ์‚ฌ์ „ ํ•™์Šต๋œ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์ด ํŠน์ • ๋„๋ฉ”์ธ ๋ฐ์ดํ„ฐ์—์„œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ์Œ.

1. ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ ์ดํ•ด

ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP) ์ž‘์—…์— ์‚ฌ์šฉ๋˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ž„. ํŠธ๋žœ์Šคํฌ๋จธ ์•„ํ‚คํ…์ฒ˜๋Š” ์…€ํ”„ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ž…๋ ฅ ์‹œํ€€์Šค์˜ ๊ฐ ์š”์†Œ๊ฐ€ ๋‹ค๋ฅธ ์š”์†Œ๋“ค๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ. ๋Œ€ํ‘œ์ ์ธ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์—๋Š” BERT, GPT, T5 ๋“ฑ์ด ์žˆ์Œ.

2. ํŒŒ์ธํŠœ๋‹์˜ ํ•„์š”์„ฑ

์‚ฌ์ „ ํ•™์Šต๋œ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ผ๋ฐ˜์ ์ธ ์–ธ์–ด ํŒจํ„ด์„ ํ•™์Šตํ•˜์ง€๋งŒ, ํŠน์ • ์ž‘์—…(์˜ˆ: ๊ฐ์„ฑ ๋ถ„์„, ์งˆ๋ฌธ ๋‹ต๋ณ€, ๋ฒˆ์—ญ ๋“ฑ)์—๋Š” ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€ ์•Š์Œ. ํŒŒ์ธํŠœ๋‹์€ ์ด ๋ชจ๋ธ์„ ํŠน์ • ๋„๋ฉ”์ธ์˜ ์ž‘์€ ๋ฐ์ดํ„ฐ์…‹์— ๋งž๊ฒŒ ์กฐ์ •ํ•˜์—ฌ ํŠน์ • ์ž‘์—…์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ.

3. ํŒŒ์ธํŠœ๋‹์˜ ๋‹จ๊ณ„

3.1. ๋ฐ์ดํ„ฐ ์ค€๋น„

ํŒŒ์ธํŠœ๋‹์— ์‚ฌ์šฉํ•  ๋ฐ์ดํ„ฐ์…‹์„ ์ค€๋น„ํ•ด์•ผ ํ•จ. ๋ฐ์ดํ„ฐ์…‹์€ ๋ชจ๋ธ์ด ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์ž‘์—…์— ๋งž๊ฒŒ ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์–ด ์žˆ์–ด์•ผ ํ•จ.
์˜ˆ: ๊ฐ์„ฑ ๋ถ„์„์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์€ ๊ฐ ๋ฌธ์žฅ์— ๊ธ์ •, ๋ถ€์ • ๋“ฑ์˜ ๋ ˆ์ด๋ธ”์ด ๋ถ™์–ด ์žˆ์–ด์•ผ ํ•จ.

3.2. ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ ๋กœ๋“œ

Hugging Face์˜ Transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์‰ฝ๊ฒŒ ์‚ฌ์ „ ํ•™์Šต๋œ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์„ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Œ. ์˜ˆ๋ฅผ ๋“ค์–ด, BERT ๋ชจ๋ธ์„ ๋กœ๋“œํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ:
from transformers import BertTokenizer, BertForSequenceClassification model_name = "bert-base-uncased" tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name)

3.3. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ

๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•˜๊ธฐ ์ „์— ํ† ํฌ๋‚˜์ด์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ํ† ํฐํ™”ํ•จ.
inputs = tokenizer("Hello, how are you?", return_tensors="pt")

3.4. ํŒŒ์ธํŠœ๋‹ ์„ค์ •

๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ํ•˜๊ธฐ ์œ„ํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•จ. ์ฃผ๋กœ ํ•™์Šต๋ฅ , ๋ฐฐ์น˜ ํฌ๊ธฐ, ์—ํญ ์ˆ˜ ๋“ฑ์„ ์กฐ์ •ํ•จ.
from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', )

3.5. ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹

Trainer API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ํ•จ.
trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) trainer.train()

4. ํ‰๊ฐ€ ๋ฐ ์ €์žฅ

ํŒŒ์ธํŠœ๋‹์ด ์™„๋ฃŒ๋˜๋ฉด ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ €์žฅํ•จ.
trainer.evaluate() model.save_pretrained("./fine_tuned_model")

5. ์‹ค์ œ ์‚ฌ์šฉ

ํŒŒ์ธํŠœ๋‹๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ๋ฅผ ์˜ˆ์ธกํ•จ.
inputs = tokenizer("This is a great movie!", return_tensors="pt") outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1)
ย 

์ฐธ๊ณ ์ž๋ฃŒ

4-1. Transformer(Self Attention) [์ดˆ๋“ฑํ•™์ƒ๋„ ์ดํ•ดํ•˜๋Š” ์ž์—ฐ์–ด์ฒ˜๋ฆฌ]
์•ˆ๋…•ํ•˜์„ธ์š”ย '์ฝ”๋”ฉ ์˜คํŽ˜๋ผ'๋ธ”๋กœ๊ทธ๋ฅผ ์šด์˜ํ•˜๊ณ  ์žˆ๋Š” ์ €๋Š”ย 'Master.M'์ž…๋‹ˆ๋‹ค. ํ˜„์žฌ ์ €๋Š”ย '์ดˆ๋“ฑํ•™์ƒ๋„ ์ดํ•ดํ•˜๋Š”ย ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ'๋ผ๋Š” ์ฃผ์ œ๋กœ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP)์— ๋Œ€ํ•ด ํฌ์ŠคํŒ…์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ œ๋ชฉ์ฒ˜๋Ÿผ ์ง„์งœ ํ•ต์‹ฌ ๋‚ด์šฉ์„ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ์œผ๋‹ˆ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP)์— ์ž…๋ฌธํ•˜๊ณ  ์‹ถ์€ ๋ถ„๋“ค์€ ๋งŽ์€ ๊ด€์‹ฌ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์ง€๊ธˆ๋ถ€ํ„ฐ ์•Œ์•„๋ณผ ๋‚ด์šฉ์€ 'Transformer'์ž…๋‹ˆ๋‹ค. Transformer ๊ฐœ๋…์€ ๋„ˆ๋ฌด ๋ฐฉ๋Œ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฒˆ ์‹œ๊ฐ„์—๋Š” "Self Attention"์„ ์ง‘์ค‘์ ์œผ๋กœ ๋‹ค๋ฃจ๊ฒ ์Šต๋‹ˆ๋‹ค. ์ดํ›„ ๋‚ด์šฉ๋“ค์€ ๋‹ค์Œ ๊ธ€์—์„œ ๋‹ค๋ฃจ๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.ย ย Transformer ๋ž€?ย ย ๋ณธ๋ก  ๋ถ€ํ„ฐ ๋ง์”€๋“œ๋ฆฌ๋ฉด Transformer ๋ชจ๋ธ์€ Attention๋งŒ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ encoder-decoder ๊ตฌ์กฐ์˜ seqenc..
4-1. Transformer(Self Attention) [์ดˆ๋“ฑํ•™์ƒ๋„ ์ดํ•ดํ•˜๋Š” ์ž์—ฐ์–ด์ฒ˜๋ฆฌ]

๋Œ“๊ธ€

guest